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A new kind of bicategorical limit is used to characterize bicategories of the form Span(¢) and
Rel(#) where in the former case ¢ is a category with pullbacks and in the latter # is a regular
category. The characterization of Rel(# ) differs from those in the literature which require involu-
tions on the bicategories.

0. Introduction

Recent trends in enriched category theory [2] suggest the need to characterize
bicategories of spans as defired by Bénabou [1]. Walters has observed that
categories locally internal to ¢ are ::ategories enriched in Span(¢ ); this example pro-
vided motivation for [6] and will be further developed in a forthcoming paper of
Betti-Walters. Our characterizations of Span(¢) and Rel(¢) do not involve exira
data such as involutions (compare [3], [7]) or tensor products on the bicategories,
and in the case of Rel(¢), we dispense with Freyd’s modularity condition [3]. We
exploit a new kind of lax limit for an arrow in a bicategory; we use Freyd’s term
‘tabulation’ although his use involved the involution and local finite products [3].

1. Tabulation .

An arrow f: A— B in a bicategory .4 will be called a map (after [6]) when it has
a right adjoint f*: B— A; the unit and counit for f— f* are denoted by £: ff*=1,
n:1=f*f. Let 4*denote the sub-bicategory of .4 with the same objects, with maps
as arrows, and with all 2-cells between these. We suppress the associativity 2-cells
for composition in .4; so, for example if o:f=rs, 7:st=g are 2-cells, we write
(rt)(ot) for the composite

t
St 5 (rs)t=r(st) 5 rg.
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A tabulation for an arrow r: A—B in 4 is a diagram (/;, g):

R

=
A—B

r

satisfying the following conditions:

TO. f is a map.

T1. For all other such diagrams (u, w,v) with ¥ a map, there exist w, 8: fw= u,
and invertible v: v = gw such that w = (r9)(ow)v.

X
/

x /N
/2N /A
u/ w \V= y/e R =\ v
t—3
ArB/f:’\
A — B
r

T2. For all maps u:X—A, arrows w,w': X—R, and 2-cells 8:fw=u,
0 :fw=u, B:gw=gw’ such that (rf)(ow)= (r6")(ew’)B, there exists a unique
y:w=w’ such that f=gy, 6=6'(fy).

The diagram (f,o,g) is called a wide tabulation for r when, in the definition
above, TO is deleted and T1, T2 are strengthened to allow u to be an arbitrary arrow
(not just a map).

These definitions can be reformulated in terms of the bicategory 4 #A4 whose ob-
jects are arrows u : X — A, whose arrows (h,0) :u—v consist of h: XY, §:vh= u,
and whose 2-cells 6 : (h,0) = (h',0") are g : h= h’ with 6 =6'(vg). An arrow r: A—B
induces a homomorphism of bicategories r—: .44 — .4 7 B which takes u to ru and
(h, 6) to (h,r). Let .47 *4 denote the full sub-bicategory of .47 A consisting of the
u: X—A which are maps.

Proposition 1. (a) A tabulation for r: A~ B is a birepresentation [5; (1.1 1)} for the
homomorphism

B2 *4)°P BB T
(#77AYP = (47 B) By

and so is unique up to equivalence.
(b) A wide tabulation for r: A— B is a birepresentation Jor the homomorphism

4 // op 4 V/ op .
(47 ANP = (4 7 BYP s Cat,
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(c) A wide tabulation for r satisfies TO and so is a tabulation.
(d) If (f,0,8) is a tabulation for r, then (re)(of*): gf*=r is invertible.
(e) If fis a map, then (f,n,1) is a wide tabulation for f*.

Proof. (a) A birepresentation for the homomorphism is an object f:R—A of
A4 7*A and an equivalence

(47 *A)u, f)=(47 B)ru,1p)

which is a strong transformation in u € .4 7 *4. To give this equivalence is precisely
to give g: R—B and p:g= rf satisfying T1, T2.

(b) Delete “*’ in the proof of (a).

(c) Apply Tl with X=A4, u=1,4, v=r, w=1, to obtain a candidate for f* and
a candidate for the counit. Apply the strong T2 with w= 1, w'f*f to obtain the
unit and the adjunction conditions. (Note that gf*=r so (d) is clear here.)

(d) Apply T1 with X=A4, u=1,, v=r, w=1g, to obtain f/, 6': ff' =1,,
vir=gf' with 1,=(r0")(of")v. Apply T2 with u=1,, w=f* w'=f',0=¢: ff*=1,
0': ff'=1, B=v(re)(of *) to obtain y : f*= f’ with gy = v(re)(af*)e =0'(fy). The last
equation implies y: f*= f"is a split monic (coretraction), while the calculation:

(gy)(gf*0')gnf") = v(re)ef*)(&f*0")(gnf")
= W(re)(rff*0" Nof*ff ' Nenf")
=v(ro")reff )rfnf )ef")
=v(rf")ef") =1y,

shows that gy is a split epic. So gy = v(re)(gf*): gf*= gf” is invertible. So (re)(of*) =
v~!(gy) is invertible.
(e) Since 2-cells w : v= f*u are in bijection with 2-cells §: fw = u with v=w, the

-

stronger form of T1 follows; the strong form of T2 is clear since g=1. __

2. Spans

Let # denote a category with pullbacks. The bicategory Span(«) is defined as
follows. The objects are those of <. An arrow r: A—B is a span r=(ry, R,r\):

o 4
A——R—13
in 4. Composition of r: A—B, s: B—C is obtained by forming the puliback of
ry,So. A 2-cell g:r=r'is an arrow ¢:R—R’in ¢ such that rog=ry, rna=r,.
The next result was stated in [2] without proof.

Proposition 2. An arrow r=(ry, R,r\): A= B in Span(+) is @ map if and only if
ro: R—=A is invertible in &.
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Proof. Any arrow isomorphic to a map is a map, so, in order to prove r is a map
when r, is invertible, it suffices to assume r=(1,A4,f). Let s=(f A4,1): B—A.
Then rs=(, A, f) and sr=(kgy, K, k;) where ky, k; form the kernel pair of f. Let
d: A—K be the arrow in & with kgd=kd=1,. Then f:rs=1g, d:1,=sr are
counit, unit for r—s.

Conversely, suppose r—s with counit g:rs=1, unit n:1=sr. Form the
pullbacks:

Po 9 lo

P S Q—R T—Q
P 5y q; r h q,
¥
R— A4 S——B Pp———S
ry So Po

Then n7: A— Q with rogon=s,q,1=1 and £: P— B with € =5ypy=r; p,. Moreover,
sn:R—T is defined by to(sn)=nry, p1ti(sn)=1; and es: TR is just gyfy. Sc the
adjunction condition gives

1 = (es)(sn) = (qo to)(s1) = GoN7.

Thus ry has inverse gon. U

Recall [1], [5] that the classifying category C.# of a bicategory .# has the same
objects as . # and has as arrows the isomorphism classes of arrows in . #. Proposition
2 gives an equivalence of categories:

¢ =C Span(¢ )*.

Proposition 3. Each arrow r in Span(¢) has a wide tabulation (f,0, g) where g is a
map.

Proof. Suppose r=(ry,R,r|): A=B and put f=(1,R,ry), g=(1, R, r)). Let ky, k,
form a kernel pair for ry and define ¢ by kjo=k;0=1;. We must show that
(f,0,8) is a wide tabulation of r. Take u=(ug, U,u;): X = A, v=(vy, V,v;): X B,
w:v=ru as in T1. Let P be the pullback of u,,r,.

Lg Ul
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Let w=(vy, V,pyw): X =R, O=pyw: fw=u, v=1:0=gw; so w=(r0)ow)v as
required.

Take u, w, w’,0,0’,  as in T2 and note that fw=(w,, W,ryw,), gw =(wy, W,rywy),
etc. So f: W—W'in ¢ satisfies wy= wy 8, r,w,=r,w; . But the equation (r8)(ow) =
(r0")ew’)p gives wy=w;. So y=8:w=w’is unique with f=gy, 6=0'(fy). [
Theorem 4. A bicategory 4 is biequivalent to Span(¢) for some category < with
pullbacks if and only if 4 satisfies the following three conditions:

(i) Each arrow r is isomorphic to gf* for some maps f, g.

(ii) For all maps f,g with the same source, there exist an arrow r and 2-cell
o:g=rf such that (f,o,g) is a tabulation of r.

(iii) Any two 2-cells f= f' between maps f, f' are equal and invertible.

Proof. Span(+ ) satisfies the conditions by Propositions 2 and 3. The conditions are
invariant under biequivalence, so we have proved ‘only if’.

Suppose .# satisfies the conditions. It is useful to observe that, if g and gw are
maps, then so is w (for, by (i) there are maps m, n with w=nm*, so, by (ii), we have
two tabulations (1,0,gw), (m,a,gn) of gw; since tabulations are unique up to
equivalence, m is invertible and w=nm* is a map).

From the remark preceding Proposition 3 we see that we must take < =C 7%,
Condition (iii) implies that ¢ is biequivalent to .4 *.

To prove # has pullbacks, take h: A= C, k: B—C to be maps in .4. By (i), (ii),
the arrow k*h has a tabulation (f, g, g) with g a map.

R B
f /g/' k
e
A PR C

By (iii) we have kg=hf. Taking isomorphism classes of maps, we obtain a com-
mutative square in ¢. To see that this is a pullback, take maps v: X—=A, v: X—B
with hu=kv. By T1, thereis w: X =R withv=gw and fw= u. Since g, gw are maps,
w is too. Then fw= u is invertible by (iii). To prove uniqueness of w in <, suppose
Sw'=u, gw’=v with w’ a map. Let § be the composite gw=v=gw’. In order to
apply T2, we must verify the compatibility condition which involves the equality of
two 2-cells gw= k*hu. Such 2-cells correspond to 2-cells Agw= hu and there is at
most one such by (iii). So T2 applies to yield y : w= w’ which is invertible by (iii).
So w, w’ become equal in .

It remains to define a biequivalence F': .4 —=Span(+). On objects it is the identity.
An arrow r: A—Bin .4 is taken to the span Fr: A— B made up of the isomorphism
classes of maps f, g with r=gf* (this uses (i) and makes a choice). Suppose r = gf*,
s=kh*in 4(A, B) are obtained by applying (i) to r,s. Then 2-cells g:r=ys are in
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bijection with 2-cells gf*= kA* which are in bijection with 2-cells g = kh*f (using
f=f*). By (i) and TI1, such 2-cells lead to arrows w with g=kw, hw= f. Since
k,kw are maps, w is a map; and, by (iii), hw=/f. Put Fo:Fr= Fs equal to the
isomorphism class of w. Using T2 and (iii), we see that the functor

F: 4(A, B)—Span(¢)(A, B)

is fully faithful, and so is clearly an equivalence. From the description above of
pullbacks in # it is also clear that F: B—Span(¢) really is a homomorphism. A
homomorphism which is bijective on objects and a local equivalence is certainly a
biequivalence. [

Remarks. (1) For categories ¢, £’ with pullbacks, it follows that the category of
pullback preserving functors ¢ — ¢’ is biequivalent to the bicategory of tabulation
preserving homomorphisms Span(#)—Span(¢ ‘). Furthermore, tabulation preserv-
ing implies wide tabulaiion preserving in this case.

(2) It is easy to see that .4 is biequivalent to Span(¢ ) for some &£ with finite limits
if and only if .# satisfies (i), (ii), (iii) of the Theorem and:

(iv) There exists an object 1 of .# such that each hom-category .4(A, 1) has a ter-
minal object which is a map.

It follows that each hom-category .4(A, B) is finitely complete.

(3) Recall that a category ¢ is called internally complete (‘locally cartesian closed’
or ‘closed span’) when each /A is cartesian closed. It follows now from [4] that
4 is biequivalent to Span(¢) for some internally complete ¢ if and only if 4
satisfies (i), (ii), (iii), (iv) and:

(v) All right extensions exist.

3. Relations

A relation r: A— B in a category ¢ is a span r: A— B such that any two 2-cells
s=r in Span(¢) are equal. If a: X—A, b: X —B are arrows in 4 we write a(r)b
when there exists a 2-cell (a, X, b)=r in Span(¢); we say that a is r-related to b.

An arrow e: Y= X in ¢ is called strong epic when, for all relations r : A—B and
arrows a: X—A, b: X— B, if aelr)be, then a(r)b. In the presence of pullbacks,
strong epic implies epic. A strong epic which is monic is invertible.

A category ¢ is called regular when:

R1. Pullbacks exist.

R2. For each span s =(sy, S, 5,) : A~ B, there exists a relation r= (ro, R,ry): A—B
and a strong epic e: S—R such that rye=s,, rie=s,.

R3. Each pullback of a strong epic is strong epic.

For a regular category #, there is a bicategory Rel(¢) defined as follows. The ob-
Jects are those of 4. An arrow r: A—B is a relation. Composition of relations
r:A—B, s: B—C is obtained by composing as spans and then applying R2 to ob-
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tain 1 relation sr: A —C; it is easily seen using R3 that a(sr)c if there are b and strong
epic e with ae(r)b and b(s)ce. The 2-cells are those of spans; however, note that
Rel(«# )(A, B) is an ordered set.

Proposition 5. An arrow r=(ry,R,ry): A—B in Rel(¢) is a map if and only if
ro: R— A is invertible in &,

Proof. If ry is invertible, then the reverse relation (r,, R, ry) provides the right ad-
joint for r [3], [7].

Conversely, suppose r —s. The unit condition is: for all a: X — .4, there exists &
and a strong e with ae(r)b and b(s)ae.

The counit condition amounts to:

b(s)a,a(r)b’ imply b=0b".

From the former with a=1, we get e(r)b with e strong epic. So r, is strong epic.
It remains to prove ry monic. Take x, s": X — R with rox=ryx’. Apply the unit con-
dition with a=ryx to obtain b and strong epic e with roxe(r)b, b(s)roxe. Apply the
counit condition to b(s)roxe, roxe(r)r, xe to cbtain b=r,xe; and similarly b=r,x’e.
Since ry, r, are jointly monic, x'e =xe. Since e is epic, x=x". ]

Proposition 6. Each arrow r in Rel(¢) has a tabulation (f,0,g) where g is a map.

Proof. By Proposition 5 (the easy direction!), we have maps f=(l,R,n)),
2=(1, R, r)). Assume c(g)b. Then r;c = b; so we have c(f)ryc, roc(r)b which implies
c(rf)b. Thus g<rf.

Suppose u: X = A, v: X — B are relations with v <ru. Then we can define a rela-
tion w: X =R by x(w)c if and only if x(u)roc and x(v)r,c. Assume x(v)b. Since
v <ru, there exist a and strong epic e with xe(u)a, a(r)be. Let ¢ be such that ryc=a,
ric = be. So xe(w)c, c(g)be. So xe(gw)be. So x(gw)b. This proves v<gw. Reversing
these steps we get gw=<v. So v=gw. If x(fw)a, then xe(w)c, ryc =ae for some ¢ and
strong epic e. So xe(u)roc. So x(u)a. So fw<u. This proves Tl (in fact, in the
stronger form!).

Suppose u, w,w’, fw<u, fw'<u, gw<gw’ as in T2. We must prove w<w’. So
take x(w)c. Then fw=<u, x(w)c, c(f)roc imply x(u)roc. Also gw<gw’, x(w)x, c(g)r,c
imply x(gw’)r;c. So there are ¢’ and strong epic e with xe(w')’, c’'(gryce. So
ric’=rice. But fw'=u, xe(w')c’, c'(g)roc’ imply xe(u)ryc’. So we have xe(uryc’,
xe(u)ryce. Since u is a map it follows that ryc’=ryce. Since ry,, ry are jointly monic,
¢’=ce. So we have xe(w’)ce which implies x(w’)c since e is strong epic. _J

In a bicategory .# for which each .4(A, B) is an ordered set, equations between
2-cells such as those in T2 hold automatically. This means that T2 is a condition on
the pair f, g independent of ¢. Thus one cannot expect general pairs of maps /, g
with the same source to form a tabulation as in Theorem 4(ii) except in very special
cases (such as Rel(¢) where ¢ is an ordered set).
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A pair of maps f, g in 4 is called ripe when f, g have the same source C and, for
all maps a,b: X —C and 2-cells a: fa= fb, f : ga= gb, there exists a unique y:a=b
with fy =a, gy =B. Clearly, if # is locally ordered then each tabulation (f, g, g) has
J, g ripe.

Theorem 7. A bicategory % is biequivalent to Rel(¢) with & a regular category if
and only if # satisfies the following three conditions:
(i) Each arrow r is isomorphic to gf* for some ripe pair of maps f, g.
{(ii) For all ripe pairs of maps f, g there exisi an arrow r and a 2-cell ¢ : g = rf such
that (f,0,8) is a tabulation of r.
(iii) Any two 2-cells with the same source and target arrows are equal, and all
2-cells between maps are invertible. '

Proof. Clearly Rel(¢) satisfies (iii). For a bicategory .4 satisfying (iii), ripeness of
a pair of maps f, g amounts to: for maps a, b, if fa=fb, ga=gb then a= b. So Rel(#)
satisfies (i), (ii) by Propositions 5 and 6.

Conversely, suppose .4 satisfies the conditions. Since (iii) irplies .# and C .4 are
biequivalent we may assume all invertible 2-cells in .# are identities. Each arrow in
4 does have a tabulation by (i) and (ii). It is important to observe that, if (f, 0, g)
is a tabulation of r, then, in T2, the arrow w is a map when v is (and so # =fw using
(iii)). To see this, let (m, g, n) be a tabulation of w. Since m—m*, farm*=fw=<u
implies fn<um; so fn=um by (iii). The pair of maps m, gn is ripe; for ma=nb,
gna = gnb imply fna=uma=umb = fnb, and so we have na = nb (since f, g are ripe),
so a = b (since m, n are ripe). By (ii), m, gn tabulate gnm*=gw=v. But 1, v tabulate
v. So n is an isomorphism. So w=nm* is a map.

Let ¢ = #4*. We shall show that & is a regular category. To prove R1 take maps
h:A—-C, k:B—C and let f,g tabulate k*h. So g=<k*hf implies kg<hf which
means kg = Af by(iii). That f, g provide a pullback for A, kK now follows from the last
paragraph.

To prove R2, take a span (4, S,v): A—B in &. Lei f, g tabulate vu*; ripeness
means (f, R, g) is a relation in 4. By the second last paragraph there exists a map
e with ge=v, fe=u. We claim ee*=1. To see this, let m, n tabulate ee*. Then
nm*=ee*<1 gives n<m which, using (iii), gives n=m. Since m,n form a relation
in ¢ (ripeness), this means m is monic. So fm, m form a ripe pair and so tabulate
m(fm)y*=mm*f*=ee*f*=e(fe)*=eu*. But T2 applies to give eu*=f* since
gleu*)=vu*=gf*, fleu*)=uu*<l1, and ff*<1. So fm,m tabulate f*. But f1
tabulate f*. So m is an isomorphism. So ee*=mm*=1. This means R2 will be
proved once we prove that any map with identity counit is strong epic in &.

Lete:Y—X be amap in 4 with ee*=1. Take a relation (f, R,g): A—Bin ¢ and
a,bin & with ae=fc, be=gc. Then a=aee* = fce*, b= bee* = gce*. By the third last
paragraph, ce* is a map. So e is a strong epic in &.

Suppose e: Y — X is a strong epic in &. The reflection of the span (¢, Y,e): X =X
into the subcategory of relations from X to X is the identity relation (1, X, 1). By
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the last two aragraphs this reflection is also given by the tabulation of ee*. So
1y, 1, cabulate ee*. So ee*=1. Thus strong epics are precisely maps with identity
counits.

Now we prove R3. Recall the construction of pullbacks in the proof of R1 above.
Suppose further that 27— h* has identity counit. Then gg*k* =gf*h*=k*hh*=k*.
This means that the reflection of the span (kg, R, g) into relations from C to B is
(k, B, 1). Thus the underlying map g of the 2-cell (kg, R, g) = (k, B, 1} is strong epic
m &,

Thus ¢ is a regular category. The homomorphism .4 —Rel(¢), which is the
identity on objecis and takes each arrow to a tabulating relation, is clearly a bi-
equivalence. [
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