bicategories Of SPans and relations

Aurelio CARBONI and Stefano KASANGIAN
Istituto Matematico "Federigo Enriques", via Saldini 50, 20133 Milano, Italy

Ross STREET
School of Mathematics and Physics, Macquarie University, North Ryde 2113. Australia

Communicated by G.M. Kelly
Received 2 December 1983

Abstract

A new kind of bicategorical limit is used to characterize bicategories of the form Span(${ }^{\circ}$) and Rel($($) where in the former case $;$ is a category with pullbacks and in the latter $:$ is a regular category. The characterization of $\operatorname{Rel}(\varepsilon)$ differs from those in the literature which require involutions on the bicategories.

0. Introduction

Recent trends in enriched category theory [2] suggest the need to characterize bicategories of spans as defined by Bénabou [1]. Walters has observed that categories locally internal to t are sategories enriched in Span((i); this example provided motivation for [6] and will be further developed in a forthcoming paper of Betti-Walters. Our characterizations of $\operatorname{Span}(\%)$ and $\operatorname{Rel}(\varepsilon)$ do not involve extra data such as involutions (compare [3], [7]) or tensor products on the bicategories, and in the case of $\operatorname{Rel}(\varepsilon)$, we dispense with Freyd's modularity condition [3]. We exploit a new kind of lax limit for an arrow in a bicategory; we use Freyd's term 'tabulation' although his use involved the involution and local finite products [3].

1. Tabulation

An arrow $f: A \rightarrow B$ in a bicategory B will be called a map (after [6]) when it has a right adjoint $f^{*}: B \rightarrow A$; the unit and counit for $f \dashv f^{*}$ are denoted by $\varepsilon: f f^{*}=1$, $\eta: 1 \Rightarrow f^{*} f$. Let.$\not \mathscr{B}^{*}$ denote the sub-bicategory of $\not \subset$ with the same objects, with maps as arrows, and with all 2-cells between these. We suppress the associativity 2 -cells for composition in \mathscr{B}; so, for example if $\sigma: f \Rightarrow r s, \tau: s t \Rightarrow g$ are 2-cells, we write $(r \tau)(\sigma t)$ for the composite

$$
f t \stackrel{\sigma t}{\Rightarrow}(r s) t \cong r(s t) \stackrel{r \tau}{\Rightarrow} r g .
$$

A tabulation for an arrow $r: A \rightarrow B$ in $: /$ is a diagram (f, ϱ, g) :

satisfying the following conditions:
T0. f is a map.
T1. For ail other such diagrams (u, ω, v) with u a map, there exist $w, \theta: f w \Rightarrow u$, and invertible $v: v \Rightarrow g w$ such that $\omega=(r \theta)(\varrho w) v$.

T2. For all maps $u: X \rightarrow A$, arrows $w, w^{\prime}: X \rightarrow R$, and 2-cells $\theta: f w \Rightarrow u$, $\theta^{\prime}: f w^{\prime}=u, \beta: g w \Rightarrow g w^{\prime}$ such that $(r \theta)(\varrho w)=\left(r \theta^{\prime}\right)\left(\varrho w^{\prime}\right) \beta$, there exists a unique $\gamma: w \Rightarrow w^{\prime}$ such that $\beta=g \gamma, \theta=\theta^{\prime}(f \gamma)$.

The diagram (f, ϱ, g) is called a wide tabulation for r when, in the definition above, T0 is deleted and T1, T2 are strengthened to allow u to be an arbitrary arrow (not just a map).

These definitions can be reformulated in terms of the bicategory $: \not / / A$ whose objects are arrows $u: X \rightarrow A$, whose arrows $(h, \theta): u \rightarrow v$ consist of $h: X \rightarrow Y, \theta: v h \Rightarrow u$, and whose 2-cells $\sigma:(h, \theta) \Rightarrow\left(h^{\prime}, \theta^{\prime}\right)$ are $\sigma: h \Rightarrow h^{\prime}$ with $\theta=\theta^{\prime}(\nu \sigma)$. An arrow $r: A \rightarrow B$ induces a homomorphism of bicategories $r-: B / / A \rightarrow . / D / B$ which takes u to $r u$ and (h, θ) to $(h, r \theta)$. Let $B V^{*} A$ denote the full sub-bicategory of $B / / A$ consisting of the $u: X \rightarrow A$ which are maps.

Proposition 1. (a) A tabulation for $r: A \rightarrow B$ is a birepresentation [5; (1.11)] for the homomorphism

$$
\left(B /{ }^{*} A\right)^{\mathrm{op}} \underset{r-}{\longrightarrow}(B / / B)^{\mathrm{op}} \xrightarrow[(B / B)\left(-, 1_{B}\right)]{ } \text { Cat }
$$

and so is unique up to equivalence.
(b) A wide tabulation for $r: A \rightarrow B$ is a birepresentation for the homomorphism

$$
(B / A)^{\mathrm{op}} \underset{r-}{\longrightarrow}(\not B / B)^{\mathrm{op}} \xrightarrow[(B / B)\left(-, 1_{B}\right)]{ } \text { Cat. }
$$

(c) A wide tabulation for r satisfies T 0 and so is a tabulation.
(d) If (f, ϱ, g) is a tabulation for r, then $(r \varepsilon)\left(\varrho f^{*}\right): g f^{*} \Rightarrow r$ is invertible.
(e) If f is a map, then $(f, \eta, 1)$ is a wide tabulation for f^{*}.

Proof. (a) A birepresentation for the homomorphism is an object $f: R \rightarrow A$ of $. B /{ }^{*} A$ and an equivalence

$$
\left(A / A^{*} A\right)(u, f)=(A / B)\left(r u, 1_{B}\right)
$$

which is a strong transformation in $u \in \mathscr{\prime \prime} \mathscr{Z}^{*} A$. To give this equivalence is preciscly to give $g: R \rightarrow B$ and $\varrho: g \Rightarrow r f$ satisfying T1, T2.
(b) Delete ' $*$ ' in the proof of (a).
(c) Apply T 1 with $X=A, u=1_{A}, v=r, \omega=1_{r}$ to obtain a candidate for f^{*} and a candidate for the counit. Apply the strong T2 with $w=1_{R}, w^{\prime} f * f$ to obtain the unit and the adjunction conditions. (Note that $g f^{*} \cong r$ so (d) is clear here.)
(d) Apply Tl with $X=A, u=1_{A}, v=r, \omega=1_{R}$, to obtain $f^{\prime}, \theta^{\prime}: f f^{\prime} \Rightarrow 1_{A}$, $v: r \cong g f^{\prime}$ with $1_{R}=\left(r \theta^{\prime}\right)\left(\varrho f^{\prime}\right) v$. Apply T2 with $u=1_{A}, w=f^{*}, w^{\prime}=f^{\prime}, \theta=\varepsilon: f f^{*} \Rightarrow 1$, $\theta^{\prime}: f f^{\prime} \Rightarrow 1, \beta=\nu(r \varepsilon)\left(\varrho f^{*}\right)$ to obtain $\gamma: f^{*} \Rightarrow f^{\prime}$ with $g \gamma=v(r \varepsilon)\left(\varrho f^{*}\right) \varepsilon=\theta^{\prime}(f \gamma)$. The last equation implies $\gamma: f^{*} \Rightarrow f^{\prime}$ is a split monic (coretraction), while the calculation:

$$
\begin{aligned}
(g \gamma)\left(g f^{*} \theta^{\prime}\right)\left(g \eta f^{\prime}\right) & =v(r \varepsilon)\left(\varrho f^{*}\right)\left(g f^{*} \theta^{\prime}\right)\left(g \eta f^{\prime}\right) \\
& =v(r \varepsilon)\left(r f f^{*} \theta^{\prime}\right)\left(\varrho f^{*} f f^{\prime}\right)\left(g \eta f^{\prime}\right) \\
& =v\left(r \theta^{\prime}\right)\left(r \varepsilon f f^{\prime}\right)\left(r f \eta f^{\prime}\right)\left(\varrho f^{\prime}\right) \\
& =v\left(r \theta^{\prime}\right)\left(\varrho f^{\prime}\right)=1_{g f^{\prime}},
\end{aligned}
$$

shows that $g \gamma$ is a split epic. So $g \gamma=v(r \varepsilon)\left(\varrho f^{*}\right): g f^{*} \Rightarrow g f^{\prime}$ is invertible. So $(r \varepsilon)\left(\rho f^{*}\right)=$ $v^{-1}(g \gamma)$ is invertible.
(e) Since 2-cells $\omega: v \Rightarrow f^{*} u$ are in bijection with 2-cells $\theta: f w^{\prime} \Rightarrow u$ with $v=w$, the stronger form of T 1 follows; the strong form oin T 2 is clear since $g=1$.

2. Spans

Let r denote a category with pullbacks. The bicategory $\operatorname{Span}\left({ }^{\prime}\right)$ is defined as follows. The objects are those of r. An arrow $r: A \rightarrow B$ is a span $r=\left(r_{0}, R, r_{1}\right)$:

in 8 . Composition of $r: A \rightarrow B, s: B \rightarrow C$ is obtained by forming the pullback of r_{1}, s_{0}. A 2-cell $\sigma: r \Rightarrow r^{\prime}$ is an arrow $\sigma: R \rightarrow R^{\prime}$ in such that $r_{0}^{\prime} \sigma=r_{0}, r_{1}^{\prime} \sigma=r_{1}$.

The next result was stated in [2] without proof.

Proposition 2. An arrow $r=\left(r_{0}, R, r_{1}\right): A \rightarrow B$ in $\operatorname{Span}\left({ }^{*}\right)$ is a map if and only if $r_{0}: \mathbf{R} \rightarrow A$ is invertible in δ.

Proof. Any arrow isomorphic to a map is a map, so, in order to prove r is a map when r_{0} is invertible, it suffices to assume $r=(1, A, f)$. Let $s=(f, A, 1): B \rightarrow A$. Then $r s=(f, A, f)$ and $s r=\left(k_{0}, K, k_{1}\right)$ where k_{0}, k_{1} form the kernel pair of f. Let $d: A \rightarrow K$ be the arrow in $\ell \in$ with $k_{0} d=k_{1} d=1_{A}$. Then $f: r s \Rightarrow 1_{B}, d: 1_{A} \Rightarrow s r$ are counit, unit for $r \dashv s$.

Conversely, suppose $r \dashv s$ with counit $\varepsilon: r s \Rightarrow 1$, unit $\eta: 1 \Rightarrow s r$. Form the pullbacks:

Then $\eta: A \rightarrow Q$ with $r_{0} q_{0} \eta=s_{1} q_{1} \eta=1$ and $\varepsilon: P \rightarrow B$ with $\varepsilon=s_{0} p_{0}=r_{1} p_{2}$. Moreover, $s \eta: R \rightarrow T$ is defined by $t_{0}(s \eta)=\eta r_{0}, p_{1} t_{1}(s \eta)=1$; and $\varepsilon s: T \rightarrow R$ is just $q_{0} t_{0}$. Sc the adjunction condition gives

$$
1=(\varepsilon s)(s \eta)=\left(q_{0} t_{0}\right)(s \eta)=q_{0} \eta r_{0} .
$$

Thus r_{0} has inverse $q_{0} \eta$.
Recall [1], [5] that the classifying category C." of a bicategory ." has the same objects as ." and has as arrows the isomorphism classes of arrows in . ". Proposition 2 gives an equivalence of categories:

$$
\therefore=\mathrm{C} \operatorname{Span}(f)^{*}
$$

Proposition 3. Each arrow r in $\operatorname{Span}(f)$ has a wide tabulation (f, ϱ, g) where g is a map.

Proof. Suppose $r=\left(r_{0}, R, r_{1}\right): A \rightarrow B$ and put $f=\left(1, R, r_{0}\right), g=\left(1, R, r_{1}\right)$. Let k_{0}, k_{1} form a kernel pair for r_{0} and define ϱ by $k_{0} \varrho=k_{1} \varrho=1_{R}$. We must show that (f, ϱ, g) is a wide tabulation of r. Take $u=\left(u_{0}, U, u_{1}\right): X \rightarrow A, v=\left(v_{0}, V, v_{1}\right): X \rightarrow B$, $\omega: v \Rightarrow r u$ as in T1. Let P be the pullback of u_{1}, r_{0}.

Let $w=\left(v_{0}, V, p_{1} \omega\right): X \rightarrow R, \theta=p_{0} \omega: f w \Rightarrow u, v=1: v \Rightarrow g w$; so $\omega=(r \theta)(\varrho w) v$ as required.

Take $u, w, w^{\prime}, \theta, \theta^{\prime}, \beta$ as in T2 and note that $f w=\left(w_{0}, W, r_{0} w_{1}\right), g w=\left(w_{0}, W, r_{1} w_{1}\right)$, etc. So $\beta: W \rightarrow W^{\prime}$ in stisfies $w_{0}=w_{0}^{\prime} \beta, r_{1} w_{1}=r_{1} w_{1}^{\prime} \beta$. But the equation $(r \theta)\left(\varrho w^{\prime}\right)=$ $\left(r \theta^{\prime}\right)\left(\varrho w^{\prime}\right) \beta$ gives $w_{1}=w_{1}^{\prime}$. So $\gamma=\beta: w \Rightarrow w^{\prime}$ is unique with $\beta=g \gamma, \theta=\theta^{\prime}(f \gamma) . \quad \square$

Theorem 4. A bicategory is is biequivalent to Span(f) for some category, with pullbacks if and on!y if :/ satisfies the following three conditions:
(i) Each arrow r is isomorphic to $g f^{*}$ for sorne maps f, g.
(ii) For all maps f, g with the same source, there exist an arrow r and 2-cell $\varrho: g \Rightarrow r f$ such that (f, ϱ, g) is a tabulation of r.
(iii) Any two 2-cells $f \Rightarrow f^{\prime}$ between maps f, f^{\prime} are equal and invertible.

Proof. Span($\left({ }^{(}\right)$satisfies the conditions by Propositions 2 and 3. The conditions are invariant under biequivalence, so we have proved 'only if'.

Suppose is satisfies the conditions. It is useful to observe that, if g and $g w$ are maps, then so is w (for, by (i) there are maps m, n with $w \cong n m^{*}$, so, by (ii), we have two tabulations ($1, \varrho, g w$), $(m, \sigma, g n)$ of $g w$; since tabulations are unique up to equivalence, m is invertible and $w \cong n m^{*}$ is a map).

From the remark preceding Proposition 3 we see that we must take ${ }^{\prime}=\mathrm{C} \mathfrak{n}^{*}$. Condition (iii) implies that k is biequivalent to \mathscr{A}^{*}.

To prove ε has pullbacks, take $h: A \rightarrow C, k: B \rightarrow C$ to be maps in A. By (i), (ii), the arrow $k^{*} h$ has a tabulation (f, ϱ, g) with g a map.

By (iii) we have $k g \cong h f$. Taking isomorphism classes of maps, we obtain a commutative square in ε. To see that this is a pullback, take maps $u: X \rightarrow A, v: X \rightarrow B$ with $h u \cong k v$. By T1, there is $w: X \rightarrow R$ with $v \cong g w$ and $f w \Rightarrow u$. Since $g, g w$ are maps, w is too. Then $f w \Rightarrow u$ is invertible by (iii). To prove uniqueness of w in i, suppose $f w^{\prime} \cong u, g w^{\prime} \cong v$ with w^{\prime} a map. Let β be the composite $g w \cong v \cong g w^{\prime}$. In order to apply T2, we must verify the compatibility condition which involves the equality of two 2 -cells $g w \Rightarrow k^{*} h u$. Such 2-cells correspond to 2 -cells $k g w \Rightarrow h u$ and there is at most one such by (iii). So T2 applies to yield $\gamma: w \Rightarrow w^{\prime}$ which is invertible by (iii). So w, w^{\prime} become equal in \therefore.

It remains to define a biequivalence $F: B \rightarrow \operatorname{Span}(f)$. On objects it is the identity. An arrow $r: A \rightarrow B$ in $: B$ is taken to the span $F r: A \rightarrow B$ made up of the isomorphism classes of maps f, g with $r \cong g f^{*}$ (this uses (i) and makes a choice). Suppose $r \equiv g f^{*}$, $s \cong k h^{*}$ in $\mathscr{A}(A, B)$ are obtained by applying (i) to r, s. Then 2-cells $\sigma: r \Rightarrow s$ are in
bijection with 2 -cells $g f^{*} \Rightarrow k h^{*}$ which are in bijection with 2-cells $g \Rightarrow k h^{*} f$ (using $f \dashv f^{*}$). By (ii) and T 1 , such 2 -cells lead to arrows w with $g \cong k w, h w \Rightarrow f$. Since $k, k w$ are maps, w is a map; and, by (iii), $h w \cong f$. Put $F \sigma: F r \Rightarrow F s$ equal to the isomorphism class of w. Using T2 and (iii), we see that the functor

$$
F: \mathscr{A}(A, B) \rightarrow \operatorname{Span}(f)(A, B)
$$

is fully faithful, and so is clearly an equivalence. From the description above of pullbacks in \Leftrightarrow it is also clear that $F: B \rightarrow \operatorname{Span}(\delta)$ really is a homomorphism. A homomorphism which is bijective on objects and a local equivalence is certainly a biequivalence.

Remarks. (1) For categories δ, ℓ^{\prime} with pullbacks, it follows that the category of pullback preserving functors $\delta \rightarrow r^{\prime \prime}$ is biequivalent to the bicategory of tabulation preserving homomorphisms Span $\left(\delta^{\prime}\right) \rightarrow \operatorname{Span}\left(\varepsilon^{\prime}\right)$. Furthermore, tabulation preserving implies wide tabulation preserving in this case.
(2) It is easy to see that $/ 2$ is biequivalent to $\operatorname{Span}(\varepsilon)$ for some f with finite limits if and only if .h satisfies (i), (ii), (iii) of the Theorem and:
(iv) There exists an object 1 of A such that each hom-category $\cdot A(A, 1)$ has a terminal object which is a map.
It follows that each hom-category $\mathscr{R}(A, B)$ is finitely complete.
(3) Recall that a category $:$ is called internally complete ('locally cartesian closed' or 'closed span') when each t / A is cartesian closed. It follows now from [4] that A is biequivalent to $\operatorname{Span}(\varepsilon)$ for some internally complete δ if and only if $1 B$ satisfies (i), (ii), (iii), (iv) and:
(v) All right extensions exist.

3. Relations

A relation $r: A \rightarrow B$ in a category δ is a span $r: A \rightarrow B$ such that any two 2-cells $s \Rightarrow r$ in Span (f) are equal. If $a: X \rightarrow A, b: X \rightarrow B$ are arrows in ε we write $a(r) b$ when there exists a 2 -cell $(a, X, b) \Rightarrow r$ in $\operatorname{Span}(\varepsilon)$; we say that a is r-related to b.

An arrow $e: Y \rightarrow X$ in δ is called strong epic when, for all relations $r: A \rightarrow B$ and arrows $a: X \rightarrow A, b: X \rightarrow B$, if $a e(r) b e$, then $a(r) b$. In the presence of pullbacks, strong epic implies epic. A strong epic which is monic is invertible.

A category δ is called regular when:
R1. Pullbacks exist.
R2. For each span $s=\left(s_{0}, S, s_{1}\right): A \rightarrow B$, there exists a relation $r=\left(r_{0}, R, r_{1}\right): A \rightarrow B$ and a strong epic $e: S \rightarrow R$ such that $r_{0} e=s_{0}, r_{1} e=s_{1}$.

R3. Each pullback of a strong epic is strong epic.
For a regular category t, there is a bicategory $\operatorname{Rel}(\delta)$ defined as follows. The objects are those of ε. An arrow $r: A \rightarrow B$ is a relation. Composition of relations $r: A \rightarrow B, s: B \rightarrow C$ is obtained by composing as spans and then applying R 2 to ob-
tain ₹ relation $s r: A \rightarrow C$; it is easily seen using R 3 that $a(s r) c$ if there are b and strong epic e with $a e(r) b$ and $b(s) c e$. The 2-cells are those of spans; however, note that $\operatorname{Rel}\left(r^{r}\right)(A, B)$ is an ordered set.

Proposition 5. An arrow $r=\left(r_{0}, R, r_{1}\right): A \rightarrow B$ in $\operatorname{Rel}(\lessdot)$ is a map if and only if $r_{0}: R \rightarrow A$ is invertible in \because.

Proof. If r_{0} is invertible, then the reverse relation $\left(r_{1}, R, r_{0}\right)$ provides the right adjoint for r [3], [7].

Conversely, suppose $r \dashv s$. The unit condition is: for all $a: X \rightarrow A$, there exists b and a strong e with $a e(r) b$ and $b(s) a e$.

The counit condition amounts to:

$$
b(s) a, a(r) b^{\prime} \quad \text { imply } \quad b=b^{\prime}
$$

From the former with $a=1_{A}$ we get $e(r) b$ with e strong epic. So r_{0} is strong epic. It remains to prove r_{0} monic. Take $x, s^{\prime}: X \rightarrow R$ with $r_{0} x=r_{0} x^{\prime}$. Apply the unir condition with $a=r_{0} x$ to obtain b and strong epic e with $r_{0} x e(r) b, b(s) r_{0} x e$. Apply the counit condition to $b(s) r_{0} x e, r_{0} x e(r) r_{1} x e$ to cbtain $b=r_{1} x e$; and similarly $b=r_{1} x^{\prime} e$. Since r_{0}, r_{1} are jointly monic, $x^{\prime} e=x e$. Since e is epic, $x=x^{\prime}$.

Proposition 6. Each arrow r in $\operatorname{Rel}(\varepsilon)$ has a tabulation (f, ϱ, g) where g is a map.
Proof. By Proposition 5 (the easy direction!), we have maps $f=\left(1, R, r_{0}\right)$, $\mathrm{g}=\left(1, R, r_{1}\right)$. Assume $c(g) b$. Then $r_{1} c=b$; so we have $c(f) r_{0} c, r_{0} c(r) b$ which implies $c(r f) b$. Thus $g \leq r f$.

Suppose $u: X \rightarrow A, v: X \rightarrow B$ are relations with $v \leq r u$. Then we can define a relation $w: X \rightarrow R$ by $x(w) c$ if and only if $x(u) r_{0} c$ and $x(v) r_{1} c$. Assume $x(v) b$. Since $v \leq r u$, there exist a and strong epic e with $x e(u) a, a(r) b e$. Let c be such that $r_{0} c=a$, $r_{1} c=b e$. So $x e(w) c, c(g) b e$. So $x e(g w) b e$. So $x(g w) b$. This proves $v \leq g w$. Reversing these steps we get $g w \leq v$. So $v \cong g w$. If $x(f w) a$, then $x e(w) c, r_{0} c=a e$ for some c and strong epic e. So $x e(u) r_{0} c$. So $x(u) a$. So $f w \leq u$. This proves T1 (in fact, in the stronger form!).

Suppose $u, w, w^{\prime}, f w \leq u, f w^{\prime} \leq u, g w \leq g w^{\prime}$ as in T2. We must prove $w \leq w^{\prime}$. S J take $x(w) c$. Then $f w \leq u, x(w) c, c(f) r_{0} c$ imply $x(u) r_{0} c$. Also $g w \leq g w^{\prime}, x(w) x, c(g) r_{1} c$ imply $x\left(g w^{\prime}\right) r_{1} c$. So there are c^{\prime} and strong epic e with $x e\left(w^{\prime}\right) c^{\prime}, c^{\prime}(g) r_{1} c e$. So $r_{1} c^{\prime}=r_{1} c e$. But $f w^{\prime} \leq u$, xe($\left.w^{\prime}\right) c^{\prime}, c^{\prime}(g) r_{0} c^{\prime}$ imply $x e(u) r_{0} c^{\prime}$. So we have xe(u) $r_{0} c^{\prime}$, xe(u) $r_{0} c e$. Since u is a map it follows that $r_{0} c^{\prime}=r_{0} c e$. Since r_{0}, r_{1} are jointly monic, $c^{\prime}=c e$. So we have $x e\left(w^{\prime}\right) c e$ which implies $x\left(w^{\prime}\right) c$ since e is strong epic.

In a bicategory \mathscr{A} for which each $\mathscr{B}(A, B)$ is an ordered set, equations between 2-cells such as those in T2 hold automatically. This means that T2 is a condition on the pair f, g independent of ϱ. Thus one cannot expect general pairs of maps f, g with the same source to form a tabulation as in Theorem 4(ii) except in very special cases (such as $\operatorname{Rel}(i)$ where δ is an ordered set).

A pair of maps f, g in $/ \beta$ is called ripe when f, g have the same source C and, for all maps $a, b: X \rightarrow C$ and 2-cells $\alpha: f a \Rightarrow f b, \beta: g a \Rightarrow g b$, there exists a unique $\gamma: a \Rightarrow b$ with $f y=\alpha, g \gamma=\beta$. Clearly, if $: \bar{y}$ is locally ordered then each tabulation (f, ϱ, g) has f, g ripe.

Theorem 7. A bicategory . is biequivalent to Rel(\because) with if a regular category if and only if $: / 8$ satisfies the following three conditions:
(i) Each arrow r is isomorphic to $g f^{*}$ for some ripe pair of maps f, g.
(ii) For all ripe pairs of maps f, g there exist an arrow r and a 2-cell $\varrho: g \Rightarrow r f$ such that (f, ϱ, g) is a tabulation of r.
(iii) Any two 2-cells with the same source and target arrows are equal, and all 2-cells between maps are invertible.

Proof. Clearly Rel($(\mathscr{\circ})$ satisfies (iii). For a bicategory \mathscr{B} satisfying (iii), ripeness of a pair of maps f, g amounts to: for maps a, b, if $f a \cong f b, g a \cong g b$ then $a \cong b$. So $\operatorname{Rel}(f)$ satisfies (i), (ii) by Propositions 5 and 6.

Conversely, suppose B / B satisfies the conditions. Since (iii) irplies B and $C . B O$ biequivalent we may assume all invertible 2-cells in \mathscr{B} are identities. Each arrow in . B does have a tabulation by (i) and (ii). It is important to observe that, if (f, ϱ, g) is a tabulation of r, then, in T2, the arrow w is a map when v is (and so $u=f w$ using (iii). To see this, let (m, σ, n) be a tabulation of w. Since $m \dashv m^{*}$, fnm* $\cong f w \leq u$ implies $f n \leq u m$; so $f n=u m$ by (iii). The pair of maps $m, g n$ is ripe; for $m a=n b$, gna $=g n b$ imply $f n a=u m a=u m b=f n b$, and so we have $n a=n b$ (since f, g are ripe), so $a=b$ (since m, n are ripe). By (ii), $m, g n$ tabulate $g n m^{*}=g w=v$. But $1, v$ tabulate v. So n is an isomorphism. So $w=n m^{*}$ is a map.

Let $\mathscr{E}=\mathscr{B}^{*}$. We shall show that \mathscr{E} is a regular category. To prove R1 take maps $h: A \rightarrow C, k: B \rightarrow C$ and let f, g tabulate $k^{*} h$. So $g \leq k^{*} h f$ implies $k g \leq h f$ which means $k g=h f$ by(iii). That f, g provide a pullback for h, k now follows from the last paragraph.

To prove R2, take a span $(u, S, v): A \rightarrow B$ in ℓ. Let f, g tabulate $v u^{*}$; ripeness means (f, R, g) is a relation in f. By the second last paragraph there exists a map e with $g e=v, f e=u$. We claim $e e^{*}=1$. To see this, let m, n tabulate $e e^{*}$. Then $n m^{*}=e e^{*} \leq 1$ gives $n \leq m$ which, using (iii), gives $n=m$. Since m, n form a relation in \mathscr{E} (ripeness), this means m is monic. So $f m, m$ form a ripe pair and so tabulate $m(f m)^{*}=m m^{*} f^{*}=e e^{*} f^{*}=e(f e)^{*}=e u^{*}$. But T2 applies to give $e u^{*}=f^{*}$ since $g\left(e u^{*}\right)=v u^{*}=g f^{*}, f\left(e u^{*}\right)=u u^{*} \leq 1$, and $f f^{*} \leq 1$. So $f m, m$ tabulate f^{*}. But $f, 1$ tabulate f^{*}. So m is an isomorphism. So $e e^{*}=m m^{*}=1$. This means R2 will be proved once we prove that any map with identity counit is strong epic in \mathscr{E}.

Let $e: Y \rightarrow X$ be a map in \mathscr{B} with $e e^{*}=1$. Take a relation $(f, R, g): A \rightarrow B$ in \mathscr{E} and a, b in $\mathscr{\varepsilon}$ with $a e=f c, b e=g c$. Then $a=a e e^{*}=f c e^{*}, b=b e e^{*}=g c e^{*}$. By the third last paragraph, ce* is a map. So e is a strong epic in ℓ.

Suppose $e: Y \rightarrow X$ is a strong epic in \mathscr{E}. The reflection of the span $(e, Y, e): X \rightarrow X$ into the subcategory of relations from X to X is the identity relation (1, $X, 1$). By
the last two raragraphs this reflection is also given by the tabulation of $e e^{*}$. So $1_{X}, 1_{X}$ abulate $e e^{*}$. So $e e^{*}=1$. Thus strong epics are precisely maps with identity counits.

Now we prove R3. Recall the construction of pullbacks in the proof of R1 above. Suppose further that $h-i h^{*}$ has identity counit. Then $g g^{*} k^{*}=g f^{*} h^{*}=k^{*} h h^{*}=k^{*}$. This means that the reflection of the span ($k g, R, g$) into relations from C to B is $(k, B, 1)$. Thus the underlying map g of the 2 -cell $(k g, R, g) \Rightarrow(k, B, 1)$ is strong epic in $\%$.

Thus δ is a regular category. The homomorphism $\mathscr{A} \rightarrow \operatorname{Rel}(\varepsilon)$, which is the identity on objects and takes each arrow to a tabulating relation, is clearly a biequivalence.

References

[1] J. Bénabou, Introduction to bicategories, Lecture Notes in Math. 47 (Springer, Berlin, 1967) 1-77.
[2] R. Betti, A. Carboni, R. Sireet and R. Walters, Variation through enrichment, J. Pure Appl. Algebra 29 (1983) 109-127.
[3] A. Carboni, Categorie di relazioni, Istituto Lombardo (Rend. Sc.) A 110 (1976) 342-350.
[4] B. Day, Limit spaces and closed span categories, Lecture Notes in Math. 420 (Springer, Berl n, 1974) 65-74.
[5] R. Street, Fibrations in bicategories, Cahiers de Géom. et Topol. Diff. 21 (1980) 111-160.
[6] R. Street, Enriched categories and cohomology, Quaestiones Mathematicae 6 (1983) 265-283.
[7] R. Succi-Cruciani, La teoria delle relazioni nello studio delle categorie regolari ed esatte, Riv. Mai. Univ. Parma (4) 1 (1975) 143-158.

