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A new kind of bicategorical limit is used to characterize bicategories of the form Span(: ) and 

Rel(c’ ) where in the former case (5 is a category with pullbacks and in the latter I’ is a regular 

category. The characterization of Rel(c ) differs from those in the literature whicn require involu- 

tions on the bicategories. 

0. Introduction 

Recent trends in enriched category theory [2] suggest the need to characterize 
bicategories of spans as defined by Benabou [ 11. Walters has observed that 
categories locally internal to 8 are ::ategories enriched in Span(f! ); this example pro- 
vided motivation for [6] and will be further developed in a forthcoming paper of 
Betti-Walters. Our characterizations of Span(Z) and Rel(t:) do not involve extra 
data such as involutions (compare [3], [7]) or tensor products on the bicategories, 
and in the case of Rel(Q, we dispense with Freyd’s modularity condition [3]. We 
exploit a new kind of lax limit for an arrow in a bicategory; we use Freyd’s term 
‘tabulation’ although his use involved the_involution and local. finite products [3]. 

1. Tabulation 

An arrow f: A -+B in a bicategory .# will be calied a map (after [6]) when it has 
a right adjoint f * : B +A; the unit and counit for f + f * are denoted by E : ff * = 1, 
u : 1 *f *f. Let .#* denote the sub-bicategory of .8 with the same objects, with maps 
as arrows, and with all 2-cells between these. We suppress the associativity 2-cells 
for composition in .$; so, for example if 0 : f * rs, T: st * g are 2-cells, we write 
(rr)(ot) for the composite 

ft Z (rs)t z r(st) II, rg. 
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A tabulation for an arrow Y : A-+B in .ti is a diagram (f, e, g): 

A-B 
r 

satisfying the following conditions: 
TO. f is a map. 
Tl. For all other such diagrams (u, W, o) with u a map, there exist w, 6 : fw * u, 

and invertible v : o * gw such that o = (r@(ew)v. 

A------+B 
r 

T2. For all maps u: X-+A, arrows w, w’: X-CR, and 2-cells tkfw*u, 
8’: fw‘j u, p: gw =gw’ such that (re)(@w) = (re’)(ew’)/3, there exists a unique 
7: w = WI sdch that p=gv, e= e'(fv). 

The diagram (&,g) is called a wide tabulation for r when, in the definition 
above, TO is deleted and Tl, T2 are strengthened to allow u to be an arbitrary arrow 
(not just a map). 

These definitions can be reformulated in terms of the bicategory .&R//A whose ob- 
jects are arrows u : X-+A, whose arrows (h, 0) : u-w consist of h : X+ Y, 8: vh * u, 
and whose 2-cells ~7: (h, 0) 3 (h’, B’) are CT: h =j h’ with 8= t?‘(v@. An arrow r : A+B 
induces a homomorphism of bicategories r- l . .d //A -+ .d H B which takes u to ru and 
(h, 0) to (h, re). Let .ti 4 *A denote the full sub-bicategory of .#(/A consisting of the 
u: X-+A which are maps. 

Proposition 1. (a) A tabulation for r : A -+ B is a birepresentation [5; ( I . 11 )J for the 
homomorphism 

(.s//*A)~~--+ (.dHB)Op ( 6//B)( 1 
r- , 

-9 B 
)‘Cat 

and so is unique up to equivalence. 
(b) A wide tabulation for r : A -+B is a birepresentation for the homomorphism 

(.d//A)“P--+ (.~//B)oP------__, 
r- (~~B)(--, le) 

Cat. 
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(c) A wide tabulation for r satisfies TO and so is a tabulation,. 
(d) I$ (f, Q, g) is a tabulation for r, then (r&&f *) : gf* 3 r is invertible. 
(e) If f is a map, then (f, q, 1) is a wide tabulation for f *. 

Proof. (a) A birepresentation for the homomorphism is an object f : R +A of 
.8 4 *A and an equivalence 

(.$/*A)@, f)-(.WB)(ru, 1~) 

which is a strong transformation in u E .d H *A. To give this equivalence is precisely 
to give g : R -+ B and Q : g * rf satisfying Tl , T2. 

(b) Delete ‘*’ in the proof of (a). 
(c) Apply Tl with X=A, u=lA, u=r, W= 1, to obtain a candidate for f * alld 

a candidate for the counit. Apply the strong T2 with w = l,, w’f *f to obtain the 
unit and the adjunction conditions. (Note that gf*zr so (d) is clear here.) 

(d) Apply Tl with X=A, u=l,, o=r, o= lR, to obtain f’, 6’:ff’* la+ 
v:rzgf’with 1 R = (r&)(@f’)v. Apply T2 with u = IA, w = f *, w’= f’, 8 =& : ff * * 1, 
8’ : ff ‘3 1, /? = v(rc)(ef *) to obtain y : f * *f’ with gy = v(rc)(ef *)& = el(fy). The last 
equation implies y : f * * f' is a split manic (coretraction), while the calculation: 

(gy)(gf-*@‘)(grlf ‘) = v(rG(ef *)(gf*e’)(grlf ‘) 

= v(r@(rff *e’)(ef *ff’ )(grlf ‘) 

= v(re’)(rEff ‘)(rfrlf ‘)(ef ‘) 

= v(rO’)(ef ‘) = I,,, 

shows that gy is a split epic. So gy = v(rc)(Qf *) : ,gf* - gf ’ is invertible. So (IX&II*) = 
v-l (gy) is invertible. 

(e) Since 2-c& cc) : u a f *1p are in bijection with 2-cells 8 : fw* u with II = W, the 
stronger form of Tl follows; the strong form oi’ T2 is clear since g = 1. I 

2. Spans 

Let CL’ denote a category with pullbacks. The bicategory Span(,‘) is defined as 
follows. The objects are those of I!. An arrow r : A+ B is a span r =- (ro, R, r, ): 

in 6. Composition of r: A -+B, s : B +C is obtained by forming the pullback of 
rI,so. A 2-cell cm-r’is an arrow 0: R-+R’in rS’ such that r&=rcj, r;o=r,. 

The next result was stated in [2] without proof. 

Proposition 2. An arrow r = (ro, R, rl) : A-+B in Span(i’ ) is a map if and ortiv it‘ 
r. : R -+ A is invertible in CL . 
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Proof. Any arrow isomorphic to a map is a map, so, in order to prove r is a map 
when r, is invertible, it suffices to assume r = (1, A,f). Let s = (f, A, 1) ; B +A. 
Then rs = (J A,f) and ST = (kO,K, k,) where kO, kr form the kernel pair of f. Let 
d:A-+K be the arrow in 8 with kOd=kld=lA. Then f:rs*lS, d:lAas~ are 
counit, unit for r -i s. 

Conversely, suppose r-is with counit t: : rs= 1, unit q : 1 * sr. Form the 
pullbacks: 

PO 
P-S Q 

40 
-R 

to 
T- Q 

Pl I * 
R------+A 

ro 
S -B P-S 

SO P(! 

Then pi: A-+Q with roqopl=slqlpj= 1 and E:P-+B with e=sopo=rlp2. Moreover, 
sq: R-+T is defined by fo(s~)=~ro, pltl(s~)= 1; and ES: T-+R is just qoto. SC the 
adjunction condition gives 

Thus r. has inverse qoq. II 

Recall [ 11, [5] that the classifying category C. /f of a bicategory . /f has the same 
objects as . f/ and has as arrows the isomorphism classes of arrows in . /i. Proposition 
2 gives an equivalence of categories: 

f! ?: C Span(A )*. 

Proposition 3. Each arrow r in Span(6 ) has a wide tabulation (f, Q, g) where g is a 
map. 

Proof. Suppose r= (ro, R, rl) : A--+B and put f = (1, R, ro), g = (I, R, r& Let ko, k, 
form a kernel pair for r. and define Q by koe = k,e = lR. We must show that 
(f, e,g) is a wide tabulation of r. Take u = (uo, U, ur) : X-+A, u = (ug, V, u,) : X--+B, 
o : o =$ ru as in Tl. Let P be the pullback of ul, ro. 



Take u, w, w’, 0, O’, /? as in T2 and note that fw = ( wo, IV, I+ w1 ), gw = ( wo, W, rl wl ), 

etc. So p: IV-+ W’ in f$ s’atisfies w. = wh#I, rl wI = rl w; p, But the equation (I+)@ w) = 
(rO’)(ew’)p gives wI = w;. So y =p : w * w’ is unique with p=gv, 0 = 0’(J*‘y). ’ -1 __ 

Theorem 4. A bicategory .fi is biequivalent to Span((! ) for some category 1’ with 
pullbacks if and on!y if .d satisfies the following three conditions: 

0 Each arrow r is isomorphic to gf* for some maps S, g. 
(ii) For ail maps J g with the same source, there exist an arrow r and 2-ceil 

e:g= rj* such that (f, Q, g) is a tabulation of r. 
(iii) Any two 2-ce11s f * f' between maps f, f’ are equal and invertible. 

Proof. Span(L ) satisfies the conditions by Propositions 2 and 3. The conditions are 
invariant under biequivalence, so we have proved ‘only if’. 

Suppose .# satisfies the conditions. it is useful to 0bserj.e that, if g and gw are 
maps, then so is w (for, by (i) there are maps m, n with WSWI*, so, by (ii), we have 
two tabulations (l,e,gw), (m, o,gn) of gw; since tabulations are unique3 up to 
equivalence, m is invertible and w z nm* is a map). 

From the remark preceding Proposition 3 we see that we must take I( = C /J*“. 
Condition (iii) implies that A is biequivalent to .@*. 

To prove c’ has pullbacks, take h : A-C, k: B-+C to be maps in A. By (i), (ii), 
the arrow k*h has a tabulation (f,e,g) with g a map. 

K 
R-B 

k 

By (iii) we have kgz hf. Taking isomorphism classes of maps, we obtain a com- 
mutative square in (5. To see that this is a pullback, take maps II: X-4, u: X-+B 
withhuzkv. ByTl, thereis w: X+Rwithozgwand fw=u. Sinceg,g\aaremaps, 
w is too. Then fw * u is invertible by (iii). To prove uniqueness of M’ in ((, suppose 
fwfz u, gw’s o with w’ a map. Let p be the composite gwzvzgw’. In order to 
apply T2, we must verify the compatibility condition which involves the equality of 
two 2-cells gw * k*hu. Such 2-cells correspond to 2-cells kgw * hrr and there is at 

most one such by (iii). So T2 applies to yield y : w * w which is invertible by (iii). 

So w, w’ become equal in fi. 
It remains to define a biequivalence F : .;A --Span(‘). On objects it is the identity. 

An arrow r: A+B in .d is taken to the span Fr: A+B made up of the isomorphism 
classes of maps f, g with r z gf* (this uses (i) and makes a choice). Suppose r s gf’*, 
sz kh * in .ti(A, B) are obtained by applying (i) to r, s. Then 2-cells o : r * s are in 
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bijection with 2-cells 9f* * kh* which are in bijection with 2-cells g * kh*f (using 

f+f*). By (ii) and Tl , such 2-cells lead to arrows w with g = kw, h w * f. Since 
k, kw are maps, w is a map; and, by (iii), hw z.f. Put Fa : Fr * Fs equal to the 
isomorphism class of w. Using T2 and (iii), we see that the functor 

F: .$(A, B)-+Span(&)(A, B) 

is fully faithful, and so is clearly an equivalence. From the description above of 
pullbacks in 6 it is also clear that F : B-+Span(6 ) really is a homomorphism. A 
homomorphism which is bijective on objects and a local equivalence is certainly a 
biequivalence. Kl 

Remarks. ( 1) For categories L, (5’ ’ with pullbacks, it follows that the category of 
pullback preserving functors L -Q ’ is biequivalent to the bicategory of tabulation 
preserving homomorphisms Span(k )-+Span(8 ‘). Furthermore, tabulation preserv- 
ing implies wide tabulation preserving in this case. 

(2) It is easy to see that .d is biequivalent to Span(f: ) for some (5’ with finite limits 
if and only if .# satisfies (i), (ii), (iii) of the Theorem and: 

(iv) There exists an object i of ./8 such that each horn-category .d(A, 1) has a ter- 
minal object which is a map. 
It follows that each horn-category .&((A, B) is finitely complete. 

(3) Recall that a category (5 is called internally complete (‘locally Cartesian closed’ 
or ‘closed span’) when each MA is Cartesian closed. It follows now from [4] that 
.A is biequivalent to Span(f( ) for some internally complete A if and only if .d 
satisfies (i), (ii), (iii), (iv) and: 

(v) All right extensions exist. 

3. Relations 

A relation r : A+ B in a category h is a span r : A -+ B such that any two 2-cells 
s=u in Span(d) are equal. If a: X-+A, b: X-+B are arrows in fi we write a(r)b 
when there exists a 2-cell (a, X, b) * r in Span(d ); we say that a is r-related to b. 

An arrow e : Y-+X in L is called strong epic when, for all relations r : A --+ B and 
arrows a: X-+A, b: X-+B, if ae(r)be, then a(r)b. In the presence of pullbacks, 
strong epic implies epic. A strong epic which is manic is invertible. 

A category 8 is called regular when: 
R 1. Pullbacks exist. 
R2. For each span s = (sg, S, si) : A 3 B, there exists a relation r = (rO, R, rl) : A -+ B 

and a strong epic e: S-+R such that roe=so, rle=sl. 
R3. Each pullback of a strong epic is strong epic. 
For a regular category (5, there is a bicategory Rel(L ) defined as follows. The ob- 

jects are those of fs . An arrow r : A -+ B is a relation. k”omposition of relations 
r : A -+B, s : B -+C is obtained by composing as spans and then applying R2 to ob- 
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tain 9 relation ST : A --+C; it is easily seen using R3 that a(sr)c if there are b and strong 
epic e with ae(r)b and b(s)ce. The 2-cells are those of spans; however, note that 
Rel(” )(A, B) is an ordered set. 

Proposition 5. An arrow r = (rO, R, r,) : A -+ B in Rel(” ) is a map if and on& if 
r, : R -+ A is invertible in 6. 

Proof. If r, is invertible, then the reverse relation (rl, R, rO) provides the right ad- 
joint for r [3], [7]. 

Conversely, suppose r is. The unit condition is: for all a : .%‘-+A, there exists b 
and a strong e with ae(r)b and b(s)ae. 

The counit condition amounts to: 

b(s)a, a(r)b’ imply b = 6’. 

From the former with a= lA we get e(r)b with e strong epic. So r. is strong epic. 
It remains to prove r. manic. Take x, s’ : X-R with rox= rox’. Apply the unit con- 
dition with a = rox to obtain b and strong epic e with roxe(r)b, b(s)roxe. Apply the 
counit condition to b(s)roxe, roxe(r)rl xe to obtain b = rl xe; and similarly h = rl x’e. 
Since ro, rl are jointly manic, x’e =xe. Since e is epic, x=x’. 3 

Proposition 6. Each arrow r in Rel(‘: ) has a tabulation ( f, Q, g) where g lis a map. 

Proof. By Proposition 5 (the easy direction!), we have maps f = (1, R,r(,), 
k = (1, R, rl). Assume c(g)b. Then rlc = b; so we have c(f)roc, r*c(r)b which implies 
c(rf)b. Thus gs r-f. 

Suppose u : X -+A, o : X--+B are relations with u 1~ ru. Then we can define a rela- 
tion w : X-R by x(w)c if and only if x(u)roc and x(o)rlc. -4ssume x(v)b. Since 
o I ru, there exist a and strong epic e with xe(u)a, a(r) Let c be such that r,,c = a, 
rlc = be. So xe(w)c, c(g)be. So xe(gw)be. So x(gw)b. This proves vrgw. Reversing 
these steps weget gwsv. So urgw. Ifx(fw)a, thenxe(w)c, r,c-ae for somecand 
strong epic e. So xe(u)roc. So x(u)a. So fwru. This proves Tl (in fact, in the 
stronger form!). 

Suppose u, w, w’, fw<u, fw’su, gwlgw’ as in T2. We must prove row’. SJ 
take x( w)c. Then fw 5 u, x( w)c, c( f )roc imply x(u)roc. Also gw 5 gw’, s( w)x, c(g)r, c 
imply x(gw’)rlc. So there are c’ and strong epic e with xe(w’)c’, c’(g)r, c-e. So 
rlc’ =qce. But fw’su, xe(w’)c’, cf(g)rocf imply xe(u)roc’. So we have xe(u)r&, 
xe(u)r,ce. Since u is a map it follows that r,,c’ = r,,ce. Since r(),, rl are jointly manic, 
C' = ce. So we have xe(w’)ce which implies x(w’)c since e is strong epic. L 

In a bicategory .# for which each .$(A, B) is an ordered set, equations between 
2-cells such as those in T2 hold automatically. This means that T2 is a condition on 
the pair f; g independent of Q. Thus one cannot expect general pairs of maps J’I c 
with the same source to form a tabulation as in Theorem 4(ii) except in very special 
cases (such as Rel(c: ) where (s is an ordered set). 
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A pair of maps f, g in :# Is called ripe when f, g have the same source C and, for 
all maps a, b : X-C and 2-cells a : fa =Qb, p : ga * gb, there exists a unique y : a * b 
with fy = a, gy =p. Clearly, if 3 is locally ordered then each tabulation (J Q, g) has 

f, g ripe. 

Theorem 7. A bicategory .8 is biequivalent to Rel(t! ) with 6 a regular category if 
and only if .8 satisfies the following three conditions: 

(i) Each arrow r is isomorphic to gf* for some ripe pair of maps f, g. 
(ii) For all ripe pairs of maps f, g there exist an arrow r and a 2-cell Q : g =$ rf such 

that (J Q, g) is a tabulation of r. 
(iii) Any two 2-cells with the same source and target arrows are equal, and all 

2-cells bet ween maps are invertible. 

Proof. Clearly Rel(&) satisfies (iii). For a bicategory .Q satisfying (iii), ripeness of 
a pair of maps fig amounts to: for maps a, 6, if fasfb, ga=gb then a= 6. SO Rel@) 
satisfies (i), (ii) by Propositions 5 and 6. 

Conversely, suppose .# satisfies the conditions. Since (iii) implies .d and Cd are 
biequivalent we may assume all invertible 2-cells in 3 are identities. Each arrow in 
A does have a tabulation by (i) and (ii). It is important to observe that, if (,,c @,g) 
is a tabulation of r, then, in T2, the arrow w is a map when u is (and so u =fw using 
(iii)). To see this, let (m, a, n) be a tabulation of w. Since m -I m *, fnm*= fw 5 u 
implies fn 5 urn; so fn = um by (iii). The pair of maps m,gn is ripe; for ma = nb, 
gna = gnb imply fna = uma = umb = fnb, and so we have na = nb (since A g are ripe), 
so a = b (since m, n are ripe). By (ii), m,gn tabulate gnm* =gw = O. But 1, o tabulate 
u. So n is an isomorphism. So w = nm* is a map. 

Let 8 = .#*. We shall show that 8 is a regular category. To prove Rl take maps 
h: A-C, k: B-C and let fig tabulate k*h. So gsk*hf implies kglhf which 
means kg = hf by(iii). That f, g provide a pullback for h, k now follows from the last 
paragraph. 

To prove R2, take a span (u, S, O) : A-B in 8. Let f, g tabulate vu*; ripeness 
means (A R,g) is a relation in A. By the second last paragraph there exists a map 
e with ge= v, fe= u. We claim ee*= 1. To see this, let m, n tabulate ee*. Then 
nm*-- - ee*'l 1 gives n s m which, using (iii), gives n = m. Since m, n form a relation 
in 6 (ripeness), this means m is manic. So fm, m form a ripe pair and so tabulate 

m(fmY = mm*f *=ee*f *=e(fe)*= eu*. But T2 applies to give eu*=f * since 
g(eu*) = vu* = gf*, f(eu *) = uu *:(: 1, and ff 3 1. So fm, m tabulate f *. But J 1 
tabulate f *. So m is an issmorphism. So ee*= mm *= 1. This means R2 will be 
proved once we prove that any map with identity counit is strong epic in A. 

Let e: Y+X be a map in G$ with ee*= 1. Take a relation (A R, g) : A-+B in 8 and 
a, b in 6 with ae = fc, be = gc. Then a = see* = fee*, b = bee* = gee*. By the third last 
paragraph, ce* is a map. So e is a strong epic in 4. 

Suppose e : Y-+X is a strong epic in G. The reflection of the span (e, Y, e) : X-+X 
into the subcategory of relations from X to X is the identity relation (1, X, I). By 
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the last two ;\aragraphs this reflection is also given by the tabulation of ee? So 
lx, 1, tabulate ee*. So ee*= 1. Thus strong epics are precisely maps with identity 
counits. 

Now we prove R3. Recall the construction of pullbacks in the proof of Rl above. 
Suppose further that h + h* has identity counit. Then gg*k* =gf*h*= k*hh*= k*. 

This means that the reflection of the span (kg, R,g) into relations from C to B is 
(k, B, 1). Thus the underlying map g of the 2-cell (kg, R, g) * (k, B, l> is strong epic 
in (5’. 

Thus (5’ is a regular category. The homomorphism .d -+Rel(o, which is the 
identity on objects and takes each arrow to a tabulating relation, is clearly a bi- 
equivalence. Cl 
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